Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cities ; 129: 103932, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1982794

ABSTRACT

COVID-19 has dramatically changed the lifestyle of people, especially in urban environments. This paper investigated the variations of built environments that were measurably associated with the spread of COVID-19 in 150 Wuhan communities. The incidence rate in each community before and after the lockdown (January 23, 2020), as respective dependent variables, represented the situation under normal circumstances and non-pharmaceutical interventions (NPI). After controlling the population density, floor area ratio (FAR), property age and sociodemographic factors, the built environmental factors in two spatial dimensions, the 15-minute walking life circle and the 10-minute cycling life circle, were brought into the Hierarchical Linear Regression Model and the Ridge Regression Model. The results indicated that before lockdown, the number of markets and schools were positively associated with the incidence rate, while community population density and FAR were negatively associated with COVID-19 transmission. After lockdown, FAR, GDP, the number of hospitals (in the 15-minute walking life circle) and the bus stations (in the 10-minute cycling life circle) became negatively correlated with the incidence rate, while markets remained positive. This study effectively extends the discussions on the association between the urban built environment and the spread of COVID-19. Meanwhile, given the limitations of sociodemographic data sources, the conclusions of this study should be interpreted and applied with caution.

2.
Sustain Chem Pharm ; 29: 100757, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1895428

ABSTRACT

Doxycycline and Naproxen are among the most widely used drugs in the therapy of CoVID 19 disease found in surface water. Water scarcity in recent years has led to research to treat polluted water. One of the easy and low-cost methods for treatment is adsorption. The utilize of Metal-Organic Frameworks (MOFs) to evacuate pharmaceutical contaminants from water sources has been considered by researchers in the last decade. In this research, HKUST-1/ZnO/SA composite with high adsorption capacity, chemical and water stability, recovery, and reuse properties has been synthesized and investigated. By adding 10 wt% of ZnO and 50 wt% of sodium alginate to HKUST-1, at 25 °C and pH = 7, the specific surface area is reduced by 60%. The parameters of drugs concentration C0 =(5,80) mg/L, time=(15,240) min, and pH= (2,12) were investigated, and the results showed that the HKUST-1/ZnO/SA is stable in water for 14 days and it can be used in 10 cycles with 80% removal efficiency. The maximum Adsorption loading of doxycycline and Naproxen upon HKUST-1/ZnO/SA is 97.58 and 80.04 mg/g, respectively. Based on the correlation coefficient (R2), the pseudo-second-order and the Langmuir isotherm models were selected for drug adsorption. The proposed mechanism of drug uptake is by MOFs, hydrogen bonding, electrostatic bonding, and acid-base interaction.

3.
PLoS One ; 16(3): e0248675, 2021.
Article in English | MEDLINE | ID: covidwho-1574573

ABSTRACT

BACKGROUND: In December 2019, a new disease named coronavirus disease 2019 (COVID-19) was occurred. Patients who are critically ill with COVID-19 are more likely to die, especially elderly patients. We aimed to describe the effect of age on the clinical and immune characteristics of critically ill patients with COVID-19. METHODS: We retrospectively included 32 patients with COVID-19 who were confirmed to have COVID-19 by the local health authority and who were admitted to the first affiliated hospital of Zhengzhou University in Zhengzhou, China between January 3 and March 20, 2020. Clinical information and experimental test data were retrospectively collected for the patients. The 32 patients in this study were all in a critical condition and were classified as severe, according to the guidelines of 2019-nCoV infection from the National Health Commission of the People's Republic of China. Data were compared between those <60 years old and ≥60 years old. RESULTS: Of 32 patients, 13 were under 60 years old, and 19 patients were ≥60 years old. The most common symptom among all patients upon admission was fever (93.8%, 30/32). Compared to younger patients, older patients exhibited increased comorbidities. Among patients who were 60 years and older, platelet count, direct bilirubin (DBIL), indirect bilirubin(IBIL), lactate dehydrogenase (LDH), B-type natriuretic peptide (BNP), C-reactive protein (CRP), procalcitonin (PCT), and interleukin-10 (IL-10) were significantly higher than in younger patients who were less than 60 years old. CD4+ T lymphocytes, CD8+ T lymphocytes, and NKT lymphocytes were decreased, CD4+/CD8+ T lymphocytes were significantly increased in all 32 patients, while there were no evident differences between younger and older patients. The CURB-65 (confusion, urea, respiratory, rate, blood pressure plus age ≥65 years), Acute Physiology and Chronic Health Evaluation (APACHE) II and pH value were significantly higher in older patients than in patients who were under 60 years old. However, the PaO2 and PaO2:FiO2 were lower in older patients than the younger. Compared to patients under 60 years old, patients who were 60 years and older tended to develop ARDS (15 [78.9%] vs 5 [38.5%]), septic shock (7 [36.8%] vs 0 [0.0%]) and were more likely to receive mechanical ventilation (13 [68.4%] vs 3[23.1%]). Dynamic trajectories of seven laboratory parameters were tracked on days 1, 3, 5 and 7, and significant differences in lymphocyte count (P = 0.026), D-dimer (P = 0.010), lactate dehydrogenase (P = 0.000) and C-reactive protein (P = 0.000) were observed between the two age groups. CONCLUSIONS: A high proportion of critically ill patients were 60 or older. Furthermore, rapid disease progression was noted in elderly patients. Therefore, close monitoring and timely treatment should be performed in elderly COVID-19 patients.


Subject(s)
COVID-19/epidemiology , Age Factors , Aged , CD4-CD8 Ratio , COVID-19/blood , COVID-19/diagnosis , COVID-19/immunology , Critical Illness , Female , Humans , Immunity , Lymphocyte Count , Male , Middle Aged , Preliminary Data , Retrospective Studies , SARS-CoV-2/isolation & purification , Severity of Illness Index
4.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 32(11): 1293-1298, 2020 Nov.
Article in Chinese | MEDLINE | ID: covidwho-1034718

ABSTRACT

OBJECTIVE: To evaluate the effectiveness and safety of convalescent plasma therapy in patients with severe and critical coronavirus disease 2019 (COVID-19). METHODS: Plasma of 200-400 mL was collected from convalescent patients 2 weeks after being discharged from the hospital. After viral nucleic acid testing and antibody testing, the plasma was infused into 16 severe or critical COVID-19 patients. Time for viral nucleic acid amplification (NAA) test turning negative, total volume of plasma transfusion, average antibody concentration, and total antibody amount were recorded. White blood cell (WBC) counts, lymphocyte (LYM) counts, neutrophil (NEU) counts, alanine aminotransferase (ALT), aspartate aminotransferase (AST), C-reactive protein (CRP), procalcitonin (PCT), lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase isoenzyme (CK-MB), hypersensitive cardiac troponin T (hs-cTnT), and lactic acid (Lac) levels were measured and the rate of change was calculated at the baseline (d0) before plasma transfusion, and day 1 (d1), day 3 (d3) after transfusion. RESULTS: (1) Patient characteristics: among the 16 patients, 5 cases (31.25%) were severe COVID-19, and 11 cases (68.75%) were critical COVID-19; 62.50% (10/16) of the patients had primary disease; the percentage of invasive ventilation and use of extracorporeal membrane pulmonary oxygenation (ECMO) in critical patients were 90.91% (10/11) and 45.46% (5/11) respectively. (2) Antibody concentration of convalescent plasma and time for NAA test turning negative: the convalescent plasma antibody concentration in this study was ranged from 10.93 kAU/L to 114.7 kAU/L, with an average value of (56.44±39.40) kAU/L. NAA test was continuously positive before plasma transfusion in 10 patients, and the time for NAA test turning negative could be counted. Eight patients turned negative from day 2 to day 8 after transfusion. Severe patients showed a shorter time for NAA test turning negative than critical patients after transfusion [2 (2-3) vs. 5 (3-8), P = 0.036]. Two critical patients transfused plasma with lower antibody concentration remained a positive result of NAA test, and died on the 3rd and 6th day respectively. (3) Laboratory results: the change rates of WBC (0.81±0.28 vs. 1.00) and NEU (0.75±0.33 vs. 1.00) were significantly decreased at d1 after convalescent plasma treatment (both P < 0.05), and the CRP level decreased to about 63% of that before transfusion (P = 0.017). No adverse events were observed during convalescent plasma transfusion. CONCLUSIONS: Viral NAA test of most patients with COVID-19 who received convalescent plasma transfusion turned negative from day 2 to day 8 after transfusion, and the turning time of severe patients was shorter than that of critical patients. Convalescent plasma therapy can reduce the patients' CRP level, and no adverse events were found during the treatment. The antibody concentration in the convalescent plasma may be one of the factors that affect the time for the nucleic acid turning negative after transfusion. Detection and screening convalescent plasma of high-titer antibody and early application to severe and critical patients are expected to improve the efficacy of convalescent plasma.


Subject(s)
COVID-19 , Blood Component Transfusion , COVID-19/therapy , Humans , Immunization, Passive , Plasma , SARS-CoV-2 , COVID-19 Serotherapy
5.
J Med Virol ; 92(11): 2870-2873, 2020 11.
Article in English | MEDLINE | ID: covidwho-935144

ABSTRACT

In this study, we performed a single-centered study of 307 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected patients. It was found that co-infection of SARS-CoV-2 and influenza virus was common during COVID-19 outbreak. And patients coinfected with SARS-CoV-2 and influenza B virus have a higher risk of developing poor outcomes so a detection of both viruses was recommended during COVID-19 outbreak.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Coinfection/virology , Disease Outbreaks/statistics & numerical data , Influenza, Human/epidemiology , Adult , Aged , China/epidemiology , Female , Humans , Influenza A virus/pathogenicity , Influenza B virus/pathogenicity , Male , Middle Aged , Retrospective Studies
6.
Front Public Health ; 8: 475, 2020.
Article in English | MEDLINE | ID: covidwho-814742

ABSTRACT

Certain high-risk factors related to the death of COVID-19 have been reported, however, there were few studies on a death prediction model. This study was conducted to delineate the clinical characteristics of patients with coronavirus disease 2019 (covid-19) of different degree and establish a death prediction model. In this multi-centered, retrospective, observational study, we enrolled 523 COVID-19 cases discharged before February 20, 2020 in Henan Province, China, compared clinical data, screened for high-risk fatal factors, built a death prediction model and validated the model in 429 mild cases, six fatal cases discharged after February 16, 2020 from Henan and 14 cases from Wuhan. Out of the 523 cases, 429 were mild, 78 severe survivors, 16 non-survivors. The non-survivors with median age 71 were older and had more comorbidities than the mild and severe survivors. Non-survivors had a relatively delay in hospitalization, with higher white blood cell count, neutrophil percentage, D-dimer, LDH, BNP, and PCT levels and lower proportion of eosinophils, lymphocytes and albumin. Discriminative models were constructed by using random forest with 16 non-survivors and 78 severe survivors. Age was the leading risk factors for poor prognosis, with AUC of 0.907 (95% CI 0.831-0.983). Mixed model constructed with combination of age, demographics, symptoms, and laboratory findings at admission had better performance (p = 0.021) with a generalized AUC of 0.9852 (95% CI 0.961-1). We chose 0.441 as death prediction threshold (with 0.85 sensitivity and 0.987 specificity) and validated the model in 429 mild cases, six fatal cases discharged after February 16, 2020 from Henan and 14 cases from Wuhan successfully. Mixed model can accurately predict clinical outcomes of COVID-19 patients.


Subject(s)
COVID-19 , Aged , China/epidemiology , Humans , Retrospective Studies , Risk Factors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL